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Abstract. The Self Consistent Field (SCF) iteration, widely used for computing the ground
state energy and the corresponding single particle wave functions associated with a many-electron
atomistic system, is viewed in this paper as an optimization procedure that minimizes the Kohn-
Sham total energy indirectly by minimizing a sequence of quadratic surrogate functions. We point
out the similarity and difference between the total energy and the surrogate, and show how the SCF
iteration can fail when the minimizer of the surrogate produces an increase in the KS total energy.
A trust region technique is introduced as a way to restrict the update of the wave functions within a
small neighborhood of an approximate solution at which the gradient of the total energy agrees with
that of the surrogate. The use of trust region in SCF is not new. However, it has been observed
that directly applying a trust region based SCF (TRSCF) to the Kohn-Sham total energy often leads
to slow convergence. We propose to use TRSCF within a direct constrained minimization (DCM)
algorithm we developed in [36]. The key ingredients of the DCM algorithm involve projecting the
total energy function into a sequence of subspaces of small dimensions and seeking the minimizer
of the total energy function within each subspace. The minimizer of a subspace energy function,
which is computed by TRSCF, not only provides a search direction along which the KS total energy
function decreases but also gives an optimal “step-length” that yields a sufficient decrease in total
energy. A numerical example is provided to demonstrate that the combination of TRSCF and DCM
is more efficient than SCF.
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1. Introduction. The Self Consistent Field (SCF) iteration is the most widely
used procedure for computing the ground state energy and the corresponding single
particle wave functions associated with a many-electron atomistic system. The proce-
dure is often viewed as a fixed point iteration in which a sequence of linear eigenvalue
problems are solved approximately. The approximate eigenvectors computed in the
jth iteration are used to construct the potential component of the Kohn-Sham ma-
trix Hamiltonian required in the j+1st iteration. Convergence is reached when the
difference between Hamiltonians formed in two consecutive iterations becomes neg-
ligible. At this point, the eigenvalues and eigenvectors of the Hamiltonian become
self-consistent and the Kohn-Sham (KS) total energy function associated with the
system reaches the global minimum.

It has long been observed that the simplest form of SCF iteration often fails to
converge. As such, a number of heuristics have been developed to prevent SCF from
diverging. These heuristics often involve combining either the potential or the charge
densities computed in the previous SCF iterations to construct a new Hamiltonian
so that the lack of self-consistency can be minimized. These techniques are known
either as charge mixing [13, 15] in the material sciences community or as the Direct
Inversion of Iterative Subspace (DIIS) extrapolation technique [24, 25] in the quantum
chemistry community. Although these heuristics work remarkably well in stabilizing
the SCF iteration for many problems, they can still fail in others. Even when they
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work, the reduction in the KS total energy is often not monotonic. Furthermore,
no satisfactory theoretical foundation has been established to explain why charge
mixing and DIIS work and under what circumstances they can fail. As a result,
the convergence of SCF is often unpredictable for large atomistic systems with small
(valence/conducting) band gaps.

In this paper, we will examine SCF from an optimization point of view. We view
the SCF iteration as an indirect way to minimize the KS total energy function through
the minimization of a sequence of quadratic surrogate functions. We point out the
similarity and difference between the surrogate and the true objective function and
introduce the concept of a trust region that can be used to restrict the update of
the wave functions within a region in which the gradients associated with the true
object and the surrogate differ very little. The trust region technique is a widely used
methodology for promoting global convergence in numerical optimization procedures
[5, 20]. Trust region based SCF (TRSCF) iteration has been used in the past in the
quantum chemistry community [28, 31], where it is sometimes called level-shifted SCF
iteration [28].

By imposing a trust region with an appropriate radius at each SCF iteration,
we can show that a monotonic reduction of the KS total energy can be achieved in
the SCF procedure. However, it has been observed that for large systems, the use of
TRSCF often leads to extremely slow convergence. In [31], the trust region technique
is combined with DIIS to accelerate the convergence of SCF. In this paper, we propose
a different approach. Instead of applying the trust region technique directly to an SCF
iteration, we use it within a direct constrained minimization (DCM) algorithm devel-
oped in [36] to generate an effective search direction and step length simultaneously.
This scheme is applicable to density functional theory (DFT) calculations in which
the number of degrees of freedom in the discretized wavefunction is much larger than
the number of electrons in the atomistic system.

The paper is organized as follows. In Section 2, we establish some basic notation
required for the discussion of SCF and DCM. In Section 3, we examine the SCF
iteration from an optimization point of view and provide the motivation for applying
the trust region technique in SCF. A trust region based SCF iteration is presented
in Section 4. We discuss the use of TRSCF within the DCM algorithm in Section 5.
A numerical example is provided in Section 6 to demonstrate the value of the trust
region technique in KS total energy minimization.

2. Background and notation. In this section, we establish the mathematical
notation required to describe the SCF and DCM algorithms. We skip the description
of the continuous formulation of the KS total energy optimization problem, which has
been presented in [36] and many other references [15, 16, 23]. Instead, we will focus
on the finite-dimensional version of the problem.

In the following discussion, we will use AT to denote the transpose of a matrix A,
and A∗ to denote the complex conjugate of A. A submatrix of A consisting of rows i
through j and columns p through q will be denoted by A(i : j, p : q). If the submatrix
contains all rows (columns) of A, it will be denoted by A(:, p : q) ( A(i : j, :) ). The
Frobenius norm of a matrix A (defined as the square root of the sum of the absolute
squares of all elements in A) is denoted by ‖A‖F .

With an appropriate discretization scheme, a single electron wave function can be
approximated by a vector xi ∈ Cn, where n is the spatial degrees of freedom, i.e., the
number of real space grid points. These vectors satisfy the orthonormality constraints

x∗
i xj = δi,j , i, j = 1, 2, ..., k,
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where k is the number of occupied states. If we let X = (x1, x2, ..., xk), the matrix

D(X) = XX∗ (2.1)

is often known as the density matrix, and the charge density associated with the k
occupied states can be expressed by

ρ(X) = diag(XX∗), (2.2)

where diag(A) denotes a column vector consisting of diagonal entries of the matrix A.
The KS total energy function consists of several components [23], i.e.,

Etotal(X) = Ekinetic(X) + Eion(X) + EH(X) + EXC(X),

where Ekinetic is the kinetic energy, Eion, EH and EXC are potential energies in-
duced by the electron-ion interaction (ionic potential), the electron-electron interac-
tion (Hartree potential) and the exchange correlation potential respectively.

Let L ∈ Cn×n be a Hermitian matrix representing a discretized Laplacian opera-
tor. The kinetic energy is then defined by [23]

Ekinetic(X) =
1

2
trace(X∗LX).

The ionic potential energy consists of a local and a non-local term. If we let Dion

be a real diagonal matrix representing a discretized local ionic potential function, then
the local ionic potential energy is defined by [23]

Eion(local)(X) = trace(X∗DionX).

The contribution from the non-local ionic potential is defined by [23]

Eion(nonlocal)(X) =
∑

i

∑

ℓ

∣

∣

∣

∣

x∗
i wℓ

∣

∣

∣

∣

2

,

where wℓ represents a discretized pseudopotential reference projection function.
In practice, appropriate boundary conditions are imposed so that L is nonsingular.

If we use S to denote the inverse of the discrete Laplacian operator, then the Hartree
potential energy, which is used to model the classical electrostatic average interaction
between electrons, can be expressed [23] by

EH(X) =
1

2
ρ(X)T S ρ(X).

The exchange correlation function ǫxc is used to model the non-classical interac-
tion between electrons. The potential energy induced by this function is defined by
[23]

EXC(X) = eT

(

ǫxc[ρ(X)]

)

,

where e is a column vector of ones.
Using the notation established above, we can state the KS total energy minimiza-

tion problem as

min Etotal(X)
s.t. X∗X = Ik,

(2.3)
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where Ik denotes a k × k identity matrix.
The Lagrangian associated with (2.3) is

L(X) = Etotal(X)− trace

[

ΛT (X∗X − Ik)

]

, (2.4)

where Λ is a k × k matrix containing the Lagrange multipliers associated with the
constraints specified by X∗X = Ik [20].

The solution to (2.3) must satisfy the first order necessary conditions

∇XL(X) = 0, (2.5)

X∗X = Ik.

Here, ∇XL represents an n× k matrix whose (i, j)-th entry is the partial derivative
of L with respect to the (i, j)-th entry of X .

It is easy to verify that

∇XEkinetic =
1

2
LX, (2.6)

∇XEion(local) = DionX, (2.7)

∇XEion(nonlocal) =
∑

ℓ

(wℓw
∗
ℓ )X, (2.8)

∇XEH = Diag(Sρ(X))X, (2.9)

∇XEXC = Diag(µxc(ρ))X, (2.10)

where

µxc(ω) ≡
dǫxc(ω)

dω

is the derivative of the exchange-correlation function. Here the notation Diag(ρ)
represents a diagonal matrix whose diagonal is determined by the vector ρ, and we
scaled (2.6) -(2.10) by 1/2 to be consistent with the convention used in the electronic
structure community.

Substituting (2.6) - (2.10) into (2.5), we obtain the Kohn-Sham equation

H(X)X = XΛk, X∗X = Ik (2.11)

where

H(X) =

[

1

2
L + Dion +

∑

ℓ

wℓw
∗
ℓ + Diag(Sρ) + Diag(µxc(ρ))

]

. (2.12)

Because the vector ρ in (2.12) depends on X , the eigenvalue problem defined by
(2.11) is nonlinear. Also note that the solution to (2.3) is not unique. If X is a
solution, then XQ is also a solution for any Q ∈ Ck×k such that Q∗Q = Ik. That is,
the solution to the constrained minimization problem or, equivalently, the nonlinear
equations defined by (2.11) is a k-dimensional invariant subspace in Cn rather than a
specific matrix. In particular, Q can be chosen such that Λk is diagonal. In this case,
X consists of k Kohn-Sham eigenvectors associated with the k smallest eigenvalues of
H(X).
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3. The optimization view of SCF. Although the nonlinear eigenvalue prob-
lem defined by (2.11) may appear easier to solve than (2.3) because of its close connec-
tion to a linear eigenvalue problem, there is yet no robust and efficient general purpose
solver for this type of problem with guaranteed convergence. The most widely used
technique for solving (2.11) is to reduce it to a sequence of linear eigenvalue problems
that can be solved by many numerical linear algebra software packages such as LA-
PACK [1] or ARPACK[18]. This approach is often known as the Self Consistent Field
(SCF) iteration. For completeness, we outline the major steps of the basic version of
the SCF iteration procedure in Figure 3.1.

SCF Iteration
Input: The matrices L, Dion, S, the vectors wℓ, ℓ = 1, 2, .... The derivative

of the exchange-correlation function µxc(x); an initial guess X(0)

for the optimal wave function X ∈ Cn×m;
Output: X ∈ Cn×m such that X∗X = Im and Etot(X) is minimized, where

Etot(X) is defined by (2.6) - (2.10).

1. for i = 1, 2, ... until convergence
2. Form H(i) = H(X(i−1));

3. Compute X(i) such that H(i)X(i) = X(i)Λ(i), and Λ(i)

contains the k smallest eigenvalues of H(i);
4. end for

Fig. 3.1. The SCF iteration

Depending on the discretization scheme used, it may not be necessary or possible
to form the Hamiltonian H(i) explicitly in the SCF calculation. This is particularly
true when the continuous problem is discretized by a spectral method using a plane
wave basis. In that case, H(i) only exists in the form of a matrix vector multiplication
procedure, and it is not feasible to solve the linear eigenvalue problem H(i)X(i) =
X(i)Λ(i) by using subroutines provided in LAPACK [1]. Iterative methods such as
the Lanczos [17, 18, 35], preconditioned conjugate gradient [14, 12, 27], the Jacobi-
Davidson type of method [6, 21, 26, 29], or multi-grid accelerated Rayleigh-quotient
iterations [3, 8, 11] are often used in this setting.

Because computing the k smallest eigenpairs of the discrete Hamiltonian H(i) is
equivalent to solving the following trace minimization problem

min q(X) = 1
2 trace(X∗H(i)X)

s.t. X∗X = Ik,
(3.1)

the SCF iteration can be viewed as an iterative procedure that minimizes the total
energy Etotal indirectly by minimizing a sequence of quadratic surrogate functions of
the form (3.1). Note that the discrete Hamiltonian H(i) is formed by using a fixed
set of wavefunctions, X(i−1), computed in the previous SCF iteration.

At X = X(i−1), the gradient of the quadratic surrogate agrees with that of Etotal,
i.e.,

∇Etotal(X)|X=X(i−1) = ∇q(X)|X=X(i−1) = H(i)X(i−1), (3.2)

even though Etotal(X
(i−1)) may be completely different from q(X(i−1)) in general.
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The gradient match between Etotal(X) and q(X) at X = X(i−1) should come as
no surprise because such a match is achieved by construction. A direct consequence
of (3.2) is that: at least within a small neighborhood of X(i−1), a reduction of q(X) is
likely to result in a reduction in Etotal(X). However, if one moves too far away from
X(i−1), Etotal(X) may actually increase because gradient matching does not hold in
general when X is away from X(i−1).

This optimization view of the SCF iteration suggests the danger of minimizing
the quadratic surrogate (3.1) by computing the k smallest eigenpairs of H(i). To
illustrate this possibility, we will now give a concrete two dimensional example below
to demonstrate how SCF may fail to converge. Consider a simplified total energy
function of the form

Etotal(x) =
1

2
xT Lx +

α

4
ρ(x)T L−1ρ(x), (3.3)

where

L =

(

2 −1
−1 2

)

, x =

(

x1

x2

)

and ρ(x) =

(

x2
1

x2
2

)

is used as our objective function, to be minimized subject to the constraint

x2
1 + x2

2 = 1. (3.4)

Note that we deliberately ignored the ionic and exchange-correlation potentials to
make this example simple enough for testing. As a result, both the total energy and
the quadratic surrogate functions are convex, which may not necessarily be the case in
general. Nonetheless, these examples exhibit the local convergence behavior of SCF.

When we set α = 2 in (3.3), the simplest version of SCF algorithm shown in
Figure 3.1 converges in 10 iterations. In Figure 3.2(a), we plot the contour of (3.3)
(dashed contour) as well as that of the quadratic surrogate (dotted contour) con-
structed at the current approximation x̂ = (x̂1, x̂2)

T = (−0.8033, −0.5956)T . The
position of x̂ is marked by a small solid circle in the figure. The minimizer of the
quadratic surrogate x̂q is marked by a small solid triangle. Both x̂ and x̂q lie on the
large circle which corresponds to the constraint (3.4).

If we zoom into the box shown in Figure 3.2(a), we can see how the total energy
changes as we move from x̂ (the small solid circle) where the gradient of Etotal(x)
matches the gradient of the quadratic surrogate) to x̂q (the solid triangle at which
the dotted elliptical contour becomes tangent to the large circle.) Figure 3.2(b) shows
that the minimizer of the quadratic surrogate, x̂q, lies on the total energy contour
(dashed) line that is to the upper right of the dashed contour line that passes x̂.
Because the total energy in this example is convex, this implies that moving from
the current approximation x̂ to x̂q results in a reduction of the total energy. For
reference purposes, we also plot the true minimizer of (3.3) as a small solid square in
Figure 3.2(b).

When we increase α to 12, the contour of (3.3) becomes less elliptical as we can
see in Figure 3.3(a). Figure 3.3(a) also shows the quadratic surrogate constructed
from the current approximation (marked by a small solid circle) x̂ = (x̂1, x̂2)

T =
(−0.8904, −0.4551)T , as well as the location of x̂q (marked by the solid triangle).
The small solid square indicates the location of the true minimizer of (3.3) for α = 12.
All of these three points lie on the orthonormality constraint shown as the large circle
in this figure.
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(a) The contours of the total energy defined in (3.3) and the
surrogate q(x) = 1

2
xT (L + αDiag(L−1ρ(x)))x for α = 2. The

current iterate x̂ is marked by the small solid circle at which
∇Etotal(x̂) = ∇q(x̂). The minimizer of q(x) is marked by the
solid triangle. Both of these points lie on the large circle which
defines the orthonormality constraint (3.4).
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(b) A zoom-in view of the boxed area in Figure 3.2(a). The
minimizer of q(x) (the small solid triangle) lies on the inner
dashed contour line indicating a decrease in the total energy.
The solid square marks the true minimizer of Etotal.

Fig. 3.2. When α = 2 is set in (3.3), the SCF iteration converges. This figure shows the change
of Etotal(x) in a single SCF iteration.
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As we zoom into the rectangular box shown in Figure 3.3(a), we can see more
clearly why a single SCF iteration from x̂ leads to an increase in (3.3). In Figure 3.3(b),
which provides a zoom-in view, we can clearly see that the dashed contour line that
passes through x̂q lies to the lower left of the curve that passes through x̂. This implies
an increase in the total energy (3.3) as we move from the current approximation x̂ to
the minimizer of the surrogate x̂q .

Fortunately, the optimization view of the SCF iteration also suggests at least two
ways to improve the convergence of SCF:

1. Develop a better surrogate function;
2. Restrict the wave function update in a small neighborhood of the current

approximation.
One typical approach is to use the second order Taylor approximation to total

energy as the surrogate model. The iterative method based on this quadratic model is
the familiar Newton’s method. However, due to the high cost associated with Hessian
computation, this approach is not practical. Although it is possible to apply a limited
memory version of a Quasi-Newton method to minimize Etotal(X) subject to the
orthonormality constraint, such an approach, in which only an approximate Hessian
is used and updated by taking into account the the gradient information computed
in previous iterations, is generally not effective because of the large dimensionality of
the minimization problem, hence the difficulty of obtaining a good approximation to
the Hessian [33].

A technique that is widely used in the current practice of electronic structure
calculation is to modify the Hessian of the quadratic surrogate (3.1) so that the
lack of self-consistency in KS Hamiltonian H(X) is minimized. The lack of self-
consistency in X can be measured in a number of ways. If X(i+1) is the approximate
solution to the quadratic minimization problem (3.1), in which H is defined in terms
of X(i), then the lack of self-consistency can be directly measured by computing
δH = ‖H(X(i+1)) − H(X(i))‖F , or simply δρ = ‖ρ(X(i+1)) − ρ(X(i))‖, because the
change in H(X) is contributed by the last two terms of (2.12) which are both functions
of the charge density ρ(X). The minimization of δρ is often achieved approximately
by choosing ρ(i+1) to be a linear combination of the charge densities computed in
the previous SCF iterations and solving an equality constrained quadratic program
which returns the “optimal” linear combination. This approach is often referred to as
the Pulay mixing scheme or the Direct Inversion of Iterative Subspace (DIIS) scheme
[15, 24, 25]. In the material sciences community, the Pulay mixing scheme is often
followed by another procedure in which selected components of the new charge density
are modified or scaled. This procedure is sometimes called the Kerker mixing scheme
[13, 15]. These mixing schemes work remarkably well for many problems but can fail
for others. To our knowledge, no theoretical analysis of these schemes is yet available.
For that reason, we will not go into the details of these mixing schemes but rather
refer readers to [15] for more discussions.

The second way to improve the convergence of SCF, which we will discuss in
the next section, is to restrict the minimization of the quadratic surrogate in (3.1),
(hence the update of the single particle wave functions) to a small neighborhood of the
current approximation X(i)). This technique is known as the trust region technique in
the numerical optimization community [5, 20]. The gradient matching (between the
total energy and the surrogate) property of SCF implies that a reduction of the total
energy in the SCF iteration can be guaranteed if one imposes a trust region with a
sufficiently small radius to (3.1).
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(a) The contours of the total energy defined in (3.3) and the
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2
xT (L + αDiag(L−1ρ(x)))x for α = 12. The

current iterate x̂ is marked by the small solid circle at which
∇Etotal(x̂) = ∇q(x̂). The minimizer of q(x) is marked by the
solid triangle. Both of these points lie on the large circle which
defines the orthonormality constraint (3.4).
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(b) A zoom-in view of the boxed area in Figure 3.2(a). The min-
imizer of q(x) (the small solid triangle) lies on the outer dashed
contour line indicating an increase in the total energy. The solid
diamond marks the true minimizer of Etotal

Fig. 3.3. When α = 12 is set in (3.3), the SCF iteration fails to converge. This figure shows
the change of Etotal(x) in a single SCF iteration.
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4. Trust region SCF. The simplest type of trust region one may consider for
(3.1) is

‖X −X(0)‖F ≤ ∆, (4.1)

where ∆ is a trust region radius that may be reduced or enlarged depending on the
ratio of the actual reduction of Etotal(X) over the predicted reduction measured in
terms of the change in q(X). The constrained optimization problem

min q(X)
X∗X = I,

‖X −X(0)‖F ≤ ∆,
(4.2)

associated with a particular choice of ∆ is known as a trust region subproblem.

However, there are two serious drawbacks associated with this type of constraint.
First of all, (4.1) is not rotationally invariant, i.e. the inequality (4.1) is not equivalent
to

‖XQ−X(0)‖F ≤ ∆,

for all Q ∈ Ck×k such that Q∗Q = Ik. As a result, the solution to the trust region
subproblem (4.2) is not rotational invariant whereas the solution to the original total
energy minimization problem is.

Secondly, adding (4.1) as a constraint makes the constrained quadratic minimiza-
tion problem much more difficult to solve. If we introduce the constraint (4.1) as a
penalty function, and solve

min q̂(X ; σ) ≡ q(X) + σ‖X −X(0)‖2F ,
X∗X = Ik

(4.3)

for an appropriately chosen penalty parameter σ, the first order necessary condition of
(4.3) cannot be expressed as a linear eigenvalue problem or other simple form. Thus
it cannot be solved easily.

To preserve the rotational invariance property of the solution to (2.3) in a trust
region subproblem, we must define the trust region in terms of quantities that are
rotationally invariant. Both the charge density ρ(X) defined in (2.2) and the density
matrix D(X) defined in (2.1) satisfy this desirable property. However, we will show
in the following that a trust region defined in terms of D(X) allows us to reduce
the minimizing of the constrained quadratic surrogate function to a linear eigenvalue
problem.

Note that D(X) is an orthogonal projector associated with the subspace spanned
by columns of X when X∗X = Ik. It is well known [10] that

‖D(X)−D(X(0))‖F , (4.4)

measures the distance between the subspaces defined by columns of X and X(0)

respectively. where ‖A‖F denotes the Frobenius norm of A. Therefore, we impose
the constraint

‖D(X)−D(X(0))‖F ≤ ∆
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on the solution to the quadratic minimization problem. Because X∗X = X(0)∗X(0) =
Ik, it is easy to verify that

‖D(X)−D(X(0))‖2F = ‖D(X)‖2F + ‖D(X(0))‖2F + 2trace

[

D(X)∗D(X(0))

]

= 2k − 2trace

[

X∗X(0)X(0)∗X

]

.

If we solve the trust region subproblem by introducing (4.4) as a penalty function
in the quadratic objective q(x), i.e., we solve

min q̂(X ; σ) ≡ 1
2 trace

[

X∗H(X(0))X

]

− σ
2 trace

[

X∗X(0)X(0)∗X

]

,

s.t. X∗X = Ik,
(4.5)

where σ is an appropriately chosen penalty parameter, then the first order necessary
condition associated with (4.5) becomes

[

H(X(0))− σX(0)X(0)∗
]

X = XΛ,

X∗X = Ik,

where Λ (which can be diagonalized by postmultiplying X by an unitary transforma-
tion) is a matrix of Lagrange multipliers.

Therefore, when a trust region is defined with respect to D(X), solving the cor-
responding trust region subproblem is equivalent to computing the eigenvectors as-
sociated with the smallest k eigenvalues of the level shifted Hamiltonian H(X(0)) −

σX(0)X(0)∗, a problem that we generally know how to solve efficiently, at least when
the dimension of H(X(0)) is small.

What remains to be determined now is the penalty or trust region parameter σ in
(4.5). Choosing a large σ value has the same effect as setting a small trust region radius
∆ in (4.2). When σ is sufficiently large, the convergence of the SCF iteration can be
guaranteed although the rate of convergence may be very slow. When σ is too small,
the solution to (4.6) may lead to an increase in the total energy. Unfortunately, the
optimal choice of σ cannot be obtained analytically in general. The standard recipe for
choosing such a parameter is usually dynamic [20]. In an unconstrained optimization
problem, one starts with an arbitrary guess ∆0 bounded by the maximum step length
allowed. After the trust region subproblem is solved, the trust region radius may be
reduced or increased based on the ratio of reduction in the true objective Etrue over
the predicted reduction Epred measured from the surrogate function. A reduction of
the trust region radius implies that the trust region subproblem must be resolved.

Two special features of the SCF iteration require the selection of penalty or trust
region parameters to be made in a slightly different manner. First of all, the quadratic
surrogate function in (3.1) does not match the true objective, i.e., the KS total energy
function, at the current iterate X(i). Recall that the only thing that matches between
Etotal(X) and q(X) at X(i) is their gradients. Hence, the ratio between the changes
in Etotal(X) and q(X) can be difficult to predict. Consequently, an adjustment of
the penalty parameter based on this ratio is unlikely to be effective. Secondly, the
evaluation of Etotal(X) tends to be costly. Therefore, the selection of the penalty
parameter should avoid repeated evaluation of the total energy.
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A heuristic for estimating the penalty parameter is developed in [31] by expressing
the change in Etotal as a function of a matrix built from a linear combination of
previous density matrices. The optimal σ is estimated by applying an inexact line
search to the approximate model. Such a scheme requires saving wavefunctions or
density matrices obtained in previous SCF iterations, thus is not practical for large
problems.

We propose to use a simpler heuristic in this paper. Our heuristic is based on the
following observation. As X(i) converges to X in a trust region enabled SCF iteration,
the eigenvalues of the level shifted Hamiltonian H(X)− σXX∗ converges to

λ1 − σ, λ2 − σ, . . . , λk − σ, λk+1, λk+2, . . . , λn, (4.6)

where

λ1 ≤ λ2 ≤ · · · ≤ λn

are eigenvalues of the Kohn-Sham Hamiltonian H(X) as defined in (2.12). Thus,
adding a trust region of the form (4.4) has the effect of increasing the gap between
the kth and the k + 1st eigenvalues of the shifted Hamiltonian. Even though (4.6)
does not hold in general for eigenvalues of the shifted Hamiltonian H(X(i)) before X(i)

converges to the solution of (2.3), our numerical experiments and those presented in
[31] show an increased gap between the kth and k + 1st eigenvalues of the shifted
H(X(i)) when σ is sufficiently large.

It is well known [22] that a larger gap between the eigenvalues associated with
the desired invariant subspace and the rest of the spectrum generally makes it easier
to compute the desired invariant subspace. Thus our heuristic tries to enlarge such a
gap when total energy increases in an SCF iteration. To be specific, we set σ to zero
initially. If the minimizer of q(X) yields an increase in Etotal(X), we increase σ by
setting it to γηmax, where ηmax is the maximum gap defined as

ηmax = max
ℓ∈{1,2,...,n−1}

λ
(i)
ℓ+1 − λ

(i)
ℓ ,

where λ
(i)
ℓ is the ℓ-th eigenvalue of H(X(i)) and γ is a small constant. Empirically, we

found a good choice of γ to be around 2 to 5. This particular strategy for choosing the
penalty parameter is somewhat conservative in the sense that σ is never decreased
in subsequent SCF iterations to allow a larger reduction in total energy. A more
sophisticated and efficient scheme will be described in a separate paper.

The major steps of a trust region based SCF iteration is summarized in Figure 4.1.
We now return to the simple example (3.3) and show the effect of applying the trust
region technique in the SCF iteration. The eigenvalues of the Hamiltonian constructed
at x̂ are:

λ̂1 = 6.4597, and λ̂2 = 9.5403.

We set σ = λ̂2 − λ̂1 to increase the gap between the eigenvalues of the shifted Hamil-
tonian by a factor of two. Figure 4.2 is almost identical to Figure 3.3(b). The only
difference is that we plotted the solution to the trust region subproblem (4.5), which
is marked by a solid diamond, in addition to the solution to the unpenalized surrogate
(3.1), which is marked by a solid triangle. As we can see in this figure, the solution
to the trust region subproblem lies inside the inner dashed contour, indicating a re-
duction in total energy as we move from the small solid circle to the solid diamond.
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TRSCF
Input: The matrices L, Dion, S, the vectors wℓ, ℓ = 1, 2, .... The derivative

of the exchange-correlation function µxc(x); an initial guess X(0)

for the optimal wave function X ∈ Cn×m;
Output: X ∈ Cn×m such that X∗X = Im and Etot(X) is minimized, where

Etot(X) is defined by (2.6) - (2.10).

1. Set σ = 0.0;
2. for i = 1, 2, ... until convergence
3. if (σ = 0.0)

4. Set H(i) = H(X(i−1));
5. else

6. Set H(i) = H(X(i−1))− σX(i−1)X(i−1)∗;
7. endif

8. Compute X(i) such that H(i)X(i) = X(i)Λ(i), and Λ(i)

contains the k smallest eigenvalues of H(i);

9. if (Etot(X
(i)) > Etot(X

(i−1))) set σ ← γ(λ
(i)
k+1 − λ

(i)
k )

for some constant γ > 1;
10. end for

Fig. 4.1. A trust-region based SCF iteration

Furthermore, the solid diamond is clearly closer to the minimizer of the total energy
(the solid square) than either the current approximation x̂ (the small solid circle) or
the minimizer of the unpenalized surrogate x̂q (the solid triangle).

5. Direct minimization of the total energy. A monotonic reduction of the
total energy can be guaranteed in TRSCF if the penalty parameter σ is sufficiently
large. However, choosing a large penalty parameter may lead to a slow convergence
rate for large atomistic systems [4] because one is forced to take a shorter step in each
TRSCF iteration. In [31], TRSCF is combined with a DIIS-like acceleration scheme
to improve the convergence rate. In this paper, we proposed to use TRSCF within a
direct constrained minimization (DCM) we developed in [36].

Instead of minimizing Etotal(X) by minimizing a sequence of quadratic surrogate
functions, the DCM algorithm minimizes the Etotal(X) directly.

This general approach has been discussed in a number of papers [2, 9, 15, 23, 30,
32, 33]. In [23, 30], a conjugate gradient (CG) type of algorithm is used to minimize
the total energy. The minimization is carried out “band-by-band”, i.e., the total
energy is minimized with respect to one wave function at a time. For the j-th band

(wavefunction), a search direction p
(i)
j is generated from a linear combination of the

wavefunction x
(i)
j = X(i)ej and the residual

rj = H(i)x
(i)
j − x

(i)
j λj ,

where λj is the j-th eigenvalue of the projected Hamiltonian X(i)∗H(i)X(i). Note
that rj is simply the j-th column of the gradient matrix ∇XL(X(i)). Similar to the

standard CG algorithm, the linear combination of x
(i)
j and rj is chosen so that p

(i)
j is

H(i)-conjugate to the previous search direction p
(i−1)
j . The new wavefunction x

(i+1)
j
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Fig. 4.2. This is the same contour plot as shown in Figure 3.3(b), except that the figure also
shows the effect of applying the trust region technique in SCF. The solution to the trust region
subproblem or the penalized problem (4.5) is marked by the solid diamond which lies to the upper
right of the inner dashed contour. Clearly, it is closer to the true minimizer (the small solid square)
than x̂ (the small solid circle) indicating a reduction in the total energy in the SCF iteration.

is then computed by minimizing the KS total energy in the subspace spanned by x
(i)
j

and p
(i)
j . To simplify this minimization problem, p

(i)
j is first orthogonalized against

x
(i)
j and normalized so that ‖p

(i)
j ‖ = 1. The new wavefunction is then parameterized

by

x
(i+1)
j = x

(i)
j cos θ + p

(i)
j sin θ,

where the optimal θ is obtained by a standard line search procedure. Instead of
using the KS function to perform the line search, Teter et al. [30] proposed using a
surrogate function that is cheaper to evaluate. However, this approach was shown in
[15] to be less efficient than the SCF iteration. We believe this is primarily due to the
“band-by-band” nature of the algorithm.

The methods presented in [9, 2, 33, 32] were designed to minimize the total energy
with respect to all wave functions (associated with the occupied state) simultaneously.
The method developed in [9] modifies the unconstrained conjugate gradient search
direction so that the orthonormality constraint X∗X = Ik can be satisfied. The
approaches taken in [2, 32] re-parameterize the search direction so that standard
unconstrained minimization can be used directly. The algorithm developed in [33] first
computes the search direction via a limited-memory BFGS [19] scheme, the search
direction is then modified through a parallel transport technique [7] to ensure that
the orthonormality constraint X∗X = Ik is satisfied in the line search procedure. In
all of these methods, the search direction is computed first, and a step length is then
determined to reduce the total energy along computed search direction.

The direct minimization algorithm we present in [36] also seeks the optimal wave
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functions associated with all occupied states simultaneously. However, we choose the
search direction and the step length simultaneously from a subspace that consists
of the existing wave functions X(i), the gradient of the Lagrangian (2.4) and the
search direction produced in the previous iteration. A special strategy is developed
to minimize the total energy within the search space while maintaining the orthonor-
mality constrained required for X(i+1). This strategy requires us to solve a projected
nonlinear eigenvalue problem as we will illustrate below.

Let R(i) be the preconditioned gradient of the Lagrangian (2.4) with respect to X
evaluated at X(i), and let P (i−1) be the search direction obtained in the i-1st iteration.
In our algorithm, the wave function update is performed within the 3k-dimensional
subspace spanned by X(i), R(i) and P (i−1). This is in the same spirit as the locally
optimal block preconditioned conjugate gradient (LOBPCG) algorithm proposed in
[14] for solving large-scale linear eigenvalue problems. Note that the inclusion of
P (i−1) is important. It prevents the search direction constructed at the i-th step from
being parallel to the steepest descent direction which often results in a tiny change
between X(i) and X(i+1) (Hence a small reduction in Etotal from X(i) to X(i+1)).

If we let

Y = (X(i), R(i), P (i−1)),

we can then express the new approximation, X(i+1), by

X(i+1) = Y G, (5.1)

where G ∈ C3k×k is chosen to minimize Ê(G) ≡ Etotal(Y G), i.e. we must solve

minG Etotal(Y G)
s.t. G∗Y T Y G = Ik.

(5.2)

The first order necessary condition of (5.2) can be derived by examining the
gradient of the Lagrangian associated with Ê(G) (with respect to G). It is easy to
verify [36] that

∇GÊ(G) = Ĥ(G)G, (5.3)

where

Ĥ(G) = Y ∗

[

1

2
L+Dion+

∑

ℓ

wℓw
∗
ℓ +Diag

(

Sρ(Y G)

)

+Diag

(

µxc(ρ(Y G))

)]

Y. (5.4)

(Note that (5.4) has been scaled by 1/2 to be consistent with the convention used in
the electronic structure community.)

Consequently, solving (5.2) is equivalent to solving

Ĥ(G)G = BGΩk, G∗BG = Ik, (5.5)

where B = Y ∗Y and the k×k diagonal matrix Ωk contains the k smallest eigenvalues
of (5.5).

Note that the projected nonlinear eigenvalue problem defined by (5.5) is much
smaller than the nonlinear eigenvalue solved in an SCF iteration. The reduction
in size provides us with more flexibility in choosing appropriate algorithms to solve
the nonlinear eigenvalue problem. In particular, we can apply the TRSCF iteration
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introduced in Section 4 to compute the desired eigenpairs of (5.5). The presence of
the mass matrix B does not pose any difficulty in defining a trust region. Through
a change of variable (i.e. let G̃ = RG, where R is the Cholesky factor of B, i.e.
G = RHR), we can easily show that the first order necessary condition of the penalized
quadratic surrogate defined at G(i) can be expressed by

[

Ĥ(G(i))− σBG(i)G(i)∗B

]

G = BGΩk, G∗BG = Ik. (5.6)

The generalized linear eigenvalue problem defined by (5.6) can be solved by calling an
appropriate LAPACK [1] subroutine. Choosing a sufficiently large penalty parameter
will guarantee that Etotal(Y G) decreases monotonically. Furthermore, it should be
noted that it is not necessary to solve equations (5.5) to full accuracy in the early stage
of the direct minimization process because all we need is a G that yields sufficient
decrease in the objective function within the subspace spanned by columns of Y .

Once G is computed, we can update the wave function following (5.1). In addition,
we can compute the search direction associated with this update using [14]

P (i) ≡ X(i+1) −X(i)G(1 : k, :) = Y (:, k + 1 : 3k)G(k + 1 : 3k, :).

Because the solution to (5.5) ensures columns of X(i+1) are orthonormal, there is no
need to explicitly orthogonalize P (i) against X(i) in our algorithm.

A complete description of the constrained minimization algorithm is shown in
Figure 5.1. We should point out that solving the projected optimization problem
in Step 7 of the algorithm requires us to evaluate the projected Hamiltonian (5.4)
repeatedly as we search for the best G. However, since the first three terms of Ĥ
do not depend on G, they can be computed and stored in advance. Only the last
two terms of (5.4) need to be updated. These updates require the charge density, the
Hartree and the exchange-correlation potentials to be recomputed.

6. Numerical examples. In this section, we compare the performance of the
DCM algorithm presented in the previous section with that of the SCF iteration
implemented in the software package PEtot [34] through two numerical examples. In
PEtot, single particle wavefunctions are discretized by a spectral method using plane
waves as the basis. These basis functions are eigenfunction of the Laplacian operator
(L) associated with the kinetic energy of the atomistic system. Thus, PEtot stores
only the Fourier coefficients of each wave function xj = Xej instead of xj itself so that
y ← Lxj can be carried out in O(n) floating point operations (flops) in the frequency
space. However, because the potential terms of the Hamiltonian (with the exception
of the non-local ionic potential) are diagonal in the spatial domain, PEtot converts the
Fourier space representation of xj into the real space representation before operations
involving these potential terms are performed. The complexity of this conversion is
O(n log n) when it is carried out by a Fast Fourier Transform (FFT). We measure
the convergence of both algorithms by examining the relative reduction of the total
energy computed in each outer iteration. The relative reduction is evaluated by

∆Ei = Etotal(X
(i))− Emin,

where Emin is a lower bound of the total energy.
In a PEtot SCF iteration, the minimization of the surrogate (3.1) is accomplished

by applying a preconditioned conjugate gradient (PCG) algorithm to minimize the
Rayleigh quotient x∗H(i)x/x∗x. Explicit deflation is put in place to accelerate the
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Algorithm: A Constrained Minimization Algorithm for Total Energy Mini-
mization

Input: An initial set of wave functions X(0) ∈ Cn×k, where k is the number
of occupied states; the matrices L, Dion, S; the vectors wℓ, ℓ =
1, 2, .... The derivative of the exchange-correlation function µxc(x);
a preconditioner K;

Output: X ∈ Cn×k such that the KS total energy function Etotal(X) is
minimized and X∗X = Ik.

1. Orthonormalize X(0) such that X(0)∗X(0) = Ik;
2. for i = 0, 1, 2, ... until convergence

3. Compute Θ = X(i)∗H(i)X(i);

4. Compute R = K−1

[

H(i)X(i) −X(i)Θ

]

,

5. if (i > 1) then
Y ← (X(i), R, P (i−1))

else

Y ← (X(i), R);
endif

6. B ← Y ∗Y ;
7. Find G ∈ C2k×2k or C3k×3k that minimizes Etotal(Y G)

subject to the constraint G∗BG = I;
8. Set X(i+1) = Y G;
9. if (i > 1) then

P (i) ← Y (:, k + 1 : 3k)G(k + 1 : 3k, :);
else

P (i) ← Y (:, k + 1 : 2k)G(k + 1 : 2k, :);
endif

10. end for

Fig. 5.1. A Direct Constrained Minimization Algorithm for Total Energy Minimization

convergence of the smallest k eigenpairs. Each PCG iteration requires a single matrix
vector (MATVEC) multiplication followed by a preconditioning operation. When n
is sufficiently large, the complexity of each MATVEC is dominated by the cost of
the FFT calculation used to convert the Fourier space representation of xj to the
real space representation. The Laplacian operator L is used as the preconditioner.
Because it is diagonal in the frequency space, the cost of preconditioning is relatively
small compared to a MATVEC. If m PCG iterations are taken on average to compute
an approximate eigenpair of H(i), then the total number of MATVECs used per SCF
iteration is m× k.

In the DCM algorithm, k MATVECs are performed in each outer iteration to
obtain the gradient. When TRSCF is used to solve the projected problem (5.5),
each outer DCM iteration contains a number of inner TRSCF iterations in which the
projected Hamiltonian (5.4) must be updated repeatedly. The update of the projected
Hartree potential requires us to compute Sρ(Y G). Because S is the inverse of L, this
calculation is typically carried out by a fast Poisson solver. The complexity of this
computation is approximately O(n log n), which is equivalent to a single MATVEC
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used in the SCF iteration asymptotically. Thus, if p inner TRSCF iterations are taken
in the DCM algorithm, the total number of MATVECs used per DCM iteration is
k + p.

6.1. The PtNiO system. We applied both algorithms to a relatively large
system consisting of 9 atoms and 86 valence electrons. It represents a thin PtNi slab
with one O atom attached to the surface. The system is used for catalysis to dissociate
O2 molecules. The wavefunction is defined on a 96 × 48 × 48 real space grid. The
number of plane wave basis functions used in the Fourier representation is 15181, and
the number of occupied states for this molecule is k = 43.

In the SCF calculation, we set the convergence tolerance of each PCG run to
τ = 10−12 and the maximum number of PCG iterations allowed to 10. That is, we
terminate the PCG iteration when

‖H(i)x
(i)
j − λ

(i)
j x

(i)
j ‖ ≤ 10−12,

or when the number of PCG iterations taken reaches 10. In our experiment, the PCG
convergence tolerance was never reached before the maximum number of iterations
were taken. Thus each outer SCF iteration consumed 43×10 MATVECS. Both Pulay
(DIIS) and Kerker charge mixing schemes were used in the outer SCF iteration to
accelerate the convergence.

In the DCM calculation, the projected minimization problem was solved by ap-
plying TRSCF iteration to (5.5). We set the number of inner TRSCF iterations to 5.
Thus, the number MATVECs used in each DCM iteration is roughly 5+43, which is
significantly smaller than that used in SCF.

Both SCF and DCM have been parallelized using MPI. For the PtNiO system, we
ran both codes on the IBM SP maintained at the National Energy Research Scientific
Computing (NERSC) Center using 64 CPUs. Each IBM SP node contains 16 Power3
CPUs and 16 GB memory. Each Power3 CPU runs at a 375Mhz clock speed, and has
2 MB L2 cache. Figure 6.1 shows that DCM exhibits monotonic convergence whereas
the total energy does not decrease monotonically in SCF even when both Pulay and
Kerker charge mixing schemes are used to stabilize the algorithm. After 20 iterations,
DCM was able to reach a much lowever KS total energy level.

6.2. The Si29H36 cluster. In the second example, we show that the trust re-
gion DCM algorithm is more efficient than the SCF iteration (accelerated by charge-
mixing) for atomistic systems that are “well behaved” (in the sense that the total
energy decreases monotonically in SCF). A smaller example was presented in our ear-
lier work [36] in which both DCM and SCF were applied to the SiH4 system. We
showed that DCM was almost four times faster than SCF when both were executed
on 16 Power3 CPUs. No trust region was used in that experiment.

In this example, we apply both trust region DCM and SCF (acclerated by charge-
mixing) to a larger silicon cluster that contains 29 silicon atoms and 36 hydrogen
atoms. The total number of valence electrons in the system is 152, i.e., the number
of occupied states is k = 76. The system is discretized by plane waves on a real space
grid of 96 × 96 × 96. The number of plane wave basis functions used is 35585. We
ran both DCM and SCF on 128 Power3 CPUs at NERSC. The PCG tolerance and
iteration limits used in this example are the same as those set in the PtNiO example.
We also set the number of inner TRSCF iterations used in DCM to 5.

Figure 6.2 shows that the total energy decreases monotonically in both the DCM
and SCF runs for this problem. However, the reduction of the total energy is much
faster in DCM than it is in SCF.
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Fig. 6.1. Comparing the convergence of SCF and DCM when they are applied to the PtNiO
system.
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Fig. 6.2. Comparing the convergence of SCF and DCM when they are applied to the Si29H36

cluster.

7. Concluding remarks. We viewed the SCF iteration, commonly used for
solving the Kohn-Sham equation, as an optimization procedure that minimizes the
Kohn-Sham total energy indirectly by minimizing a sequence of quadratic surrogate.
Such a viewpoint allows us to easily explain when SCF works and how it can fail.
It also allows us to devise techniques that can either stabilize or accelerate the SCF
iteration. We showed that the convergence of SCF can be stabilized by introducing
a quadratic constraint in the surrogate minimization problem. Such a constraint re-
stricts the wavefunction update to a small neighborhood of the current iterate at which
the gradients of the Kohn-Sham total energy and the surrogate match, hence defining
a “trust region”. However, applying a trust region based SCF iteration directly to
the Kohn-Sham equation may lead to slow convergence. We proposed using the trust
region technique within the direct constrained minimization (DCM) algorithm devel-
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oped in [36] to compute optimal search directions and step lengths simultaneously. We
demonstrated through two numerical examples that such a scheme outperforms the
SCF iteration combined with charge mixing in terms of both efficiency and reliability.
We should point out that our numerical results are still somewhat preliminary. For
atomistic systems that are “well behaved”, the performance difference between SCF
and DCM may be less dramatic if the single vector PCG algorithm used in PEtot
to solve the surrogate minimization problem (3.1) is replaced by a block algorithm.
Also, it will be interesting to see how these two methods differ in performance when
the number electrons becomes a larger fraction of n. In that case, dense matrix op-
erations will constitute a significant portions of the computational cost in both DCM
and SCF. We will perform a more systematic performance analysis in a future study
that will also take into account different discretization schemes.
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